Role of the C terminus of the ribonucleotide reductase large subunit in enzyme regeneration and its inhibition by Sml1.

نویسندگان

  • Zhen Zhang
  • Kui Yang
  • Chin-Chuan Chen
  • Jason Feser
  • Mingxia Huang
چکیده

Ribonucleotide reductase maintains cellular deoxyribonucleotide pools and is thus tightly regulated during the cell cycle to ensure high fidelity in DNA replication. The Sml1 protein inhibits ribonucleotide reductase activity by binding to the R1 subunit. At the completion of each turnover cycle, the active site of R1 becomes oxidized and subsequently regenerated by a cysteine pair (CX2C) at its C-terminal domain (R1-CTD). Here we show that R1-CTD acts in trans to reduce the active site of its neighboring monomer. Both Sml1 and R1-CTD interact with the N-terminal domain of R1 (R1-NTD), which involves a conserved two-residue sequence motif in the R1-NTD. Mutations at these two positions enhancing the Sml1-R1 interaction cause SML1-dependent lethality. These results point to a model whereby Sml1 competes with R1-CTD for association with R1-NTD to hinder the accessibility of the CX2C motif to the active site for R1 regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dif1 controls subcellular localization of ribonucleotide reductase by mediating nuclear import of the R2 subunit.

Fidelity in DNA replication and repair requires adequate and balanced deoxyribonucleotide pools that are maintained primarily by regulation of ribonucleotide reductase (RNR). RNR is controlled via transcription, protein inhibitor association, and subcellular localization of its two subunits, R1 and R2. Saccharomyces cerevisiae Sml1 binds R1 and inhibits its activity, while Schizosaccharomyces p...

متن کامل

The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage

Regulation of ribonucleotide reductase (RNR) is important for cell survival and genome integrity in the face of genotoxic stress. The Mec1/Rad53/Dun1 DNA damage response kinase cascade exhibits multifaceted controls over RNR activity including the regulation of the RNR inhibitor, Sml1. After DNA damage, Sml1 is degraded leading to the up-regulation of dNTP pools by RNR. Here, we probe the requi...

متن کامل

Investigation of solvent effect on the active site energy of Carbonic Anhydrase and Ribonucleotide Reductase

Enzymes catalyze many biological reactions. The rates of chemical reaction in the presence ofenzymes are, in some cases, accelerated more than 10 orders of magnitude relative to thecorresponding rates in solution.In this paper a comparison between optimized structures of two enzyme molecules in aspect ofenergy and dipole moment in different conditions including presence of metallic ion, without...

متن کامل

Regulation of Small Mitochondrial DNA Replicative Advantage by Ribonucleotide Reductase in Saccharomyces cerevisiae

Small mitochondrial genomes can behave as selfish elements by displacing wild-type genomes regardless of their detriment to the host organism. In the budding yeast Saccharomyces cerevisiae, small hypersuppressive mtDNA transiently coexist with wild-type in a state of heteroplasmy, wherein the replicative advantage of the small mtDNA outcompetes wild-type and produces offspring without respirato...

متن کامل

Identification and characterization of CRT10 as a novel regulator of Saccharomyces cerevisiae ribonucleotide reductase genes

The CRT10 gene was identified through screening of the Saccharomyces cerevisiae deletion library for hydroxyurea (HU) resistance. CRT10 encodes a putative 957 amino acid, 110 kDa protein with a leucine repeat and a WD40 repeat near the N-terminus. Deletion of CRT10 resulted in an enhanced resistance to HU reminiscent of the inactivation of two other ribonucleotide reductase (Rnr) suppressors, C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 7  شماره 

صفحات  -

تاریخ انتشار 2007